GEOTECHNICAL ENGINEERING REPORT Zackuse Creek Fish Passage Project Sammamish, Washington Prepared for: City of Sammamish

Project No. 160277 • December 11, 2017 DRAFT

GEOTECHNICAL ENGINEERING REPORT

Zackuse Creek Fish Passage Project Sammamish, Washington

Prepared for: City of Sammamish

Project No. 160277 • December 11, 2017 DRAFT

Aspect Consulting, LLC

Jesse Favia, LG Senior Staff Geologist jfavia@aspectconsulting.com Erik O. Andersen, PE Senior Associate Geotechnical Engineer eandersen@aspectconsulting.com

V:\160277 Zackuse Creek Fish Passage Project\Deliverables\Geotech Report\Zackuse Creek Fish Passage Draft Geotechnical Report_20171211.docx

Contents

1	Intr	roduction and Project Description	1
2	Site	e Conditions	2
	2.1	Surface Conditions	2
	2.2	Tectonics and Regional Geology	2
	2.3	Seismic Hazards	3
3	Sul	bsurface Conditions	5
	3.1	Field Exploration Program	5
	3.2	Stratigraphy	5
	3.	.2.1 Roadway Embankment Fill	
		.2.2 Quaternary Alluvium	
	3.	.2.3 Glacial Deposits of the Vashon Stade	
	3.3	Groundwater	7
4	Cor	nclusions and Recommendations	8
	4.1	Pre-Cast Concrete Box Culvert	8
	4		
		.1.1 Estimated Settlement if Peat is not Removed	-
	••	.1.1 Estimated Settlement if Peat is not Removed	-
	••		9
	4.	.1.2 Sub-Excavation of Peat	9 10
	4.2 4.3 4.3	 Sub-Excavation of Peat Culvert Wing Walls Temporary Excavations and Construction Dewatering 3.1 Temporary Shoring Using Sheet Piling 	9 10 10
	4.2 4.3 4.3 4.4	 Sub-Excavation of Peat Culvert Wing Walls Temporary Excavations and Construction Dewatering 3.1 Temporary Shoring Using Sheet Piling 3.2 Open Cuts 	9 10 10 11 11
	4.2 4.3 4.3 4.4	 Sub-Excavation of Peat Culvert Wing Walls Temporary Excavations and Construction Dewatering 3.1 Temporary Shoring Using Sheet Piling 3.2 Open Cuts 3.3 Construction Dewatering 	9 10 11 11 11
	4.2 4.3 4.3 4.4	 Sub-Excavation of Peat Culvert Wing Walls Temporary Excavations and Construction Dewatering 3.1 Temporary Shoring Using Sheet Piling 3.2 Open Cuts 	9 10 11 11 11
	4.2 4.3 4.3 4.4	 Sub-Excavation of Peat Culvert Wing Walls Temporary Excavations and Construction Dewatering 3.1 Temporary Shoring Using Sheet Piling 3.2 Open Cuts 3.3 Construction Dewatering 	9 10 11 11 11 11
	4.2 4.3 4.3 4.4 4.4	 Sub-Excavation of Peat Culvert Wing Walls Temporary Excavations and Construction Dewatering 3.1 Temporary Shoring Using Sheet Piling 3.2 Open Cuts 3.3 Construction Dewatering Structural Fill 	9 10 11 11 11 12 12
Re	4.2 4.3 4.3 4.4 4.4 4.5 4.6	 Sub-Excavation of Peat	9 10 11 11 11 12 12 12

List of Figures

- 1 Project Location Map
- 2 Site and Exploration Plan
- 3 Geologic Cross Section A-A'
- 4. Temporary Shoring, Lateral Earth Pressures for Internally Braced Sheet Piling

List of Appendices

- A Subsurface Explorations
- B Laboratory Test Results

1 Introduction and Project Description

This draft geotechnical report presents the results of a site reconnaissance, subsurface explorations, and geotechnical analyses and recommendations performed by Aspect Consulting, LLC (Aspect) in support of the Zackuse Creek Fish Passage Project (Project). Our services were provided in support of engineering studies led by OTAK, Inc (Otak) for the City of Sammamish (Client).

The Project involves the replacement of an existing 30-inch-diameter concrete culvert under East Lake Sammamish Parkway (ELSP) and rerouting portions of Zackuse Creek east of ELSP. The culvert replacement is designed to provide upstream fish passage and spawning habitat for native Lake Sammamish kokanee. The project location is shown on Figure 1, *Project Area Location Map*.

We anticipate that design and construction of the culvert and associated roadway improvements will be in accordance with the current American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications (BDS; AASHTO, 2014), and selected Washington State Department of Transportation (WSDOT; WSDOT, 2016) guidance and methodologies.

This draft report summarizes the results of the completed field explorations and presents Aspect's geotechnical engineering conclusions and design recommendations for plan, specification, and estimate (PS&E) development. This draft report is submitted following OTAK's 90% review set of project plans. The conclusions and recommendations formally provided herein were previously provided to OTAK informally (by email and/or verbally in design meetings).

2 Site Conditions

The Project area consists of a hummocky alluvial plain and wetland to the east of ELSP and a generally southwest to northeast trending fill embankment supporting ELSP above the surrounding alluvial plain. Zackuse Creek meanders across the alluvial plain traversing generally east to west before ponding up against and travelling north along ELSP about 200 feet south of a concrete culvert. The 30-inch-diameter concrete culvert carries Zackuse Creek beneath ELSP at the elevation of the alluvial plain. Zackuse Creek passes through two additional culverts before entering Lake Sammamish about 200 feet west of ELSP.

Project area topography is a generally flat alluvial plain with incised stream channels between ELSP and a west-facing slope about 650 feet east of ELSP. The fill embankment supporting ELSP is between 5-feet and 7-feet above the surrounding alluvial plain. The sides of the embankment are typically around a 1H:1V slope. The Zackuse Creek stream channel is incised into the surrounding alluvial plain up to 5-feet east exploration HA-3. West of exploration HA-3, Zackuse Creek is typically wider than upstream and near the elevation of the ground surface. Project area topography is shown on Figure 2.

2.1 Surface Conditions

Surface conditions near the culvert replacement generally consist of relatively flat asphalt paved roadway over the existing culvert, shrubs and bushes on either side of the fill embankment, and wetland vegetation consisting of bushes, common juvenile deciduous trees, and occasional large conifers growing on the alluvial plain east of ELSP.

2.2 Tectonics and Regional Geology

The Puget Lowland is located within an area of repeated glaciations in a complex tectonic environment with active seismicity. Starting about 25 million years ago, the geologic evolution of western Washington has been dominated by the subduction of the Juan de Fuca oceanic plate beneath the North American continental plate. This convergence of plates has created the Puget Trough, which is flanked by the Olympic Mountains to the west and the Cascade Range to the east. The Project will be constructed within the Puget Trough. The Tertiary and Quaternary deposits in the Puget Trough are estimated to be up to 4 miles thick.

The Project area lies about two miles north of the Seattle fault zone, in the Seattle basin, a trough containing a thick accumulation of Quaternary and Tertiary sediments. Northward-directed compression of the Puget Trough has resulted in formation of a chain of sedimentary basins that extend from the Chehalis area of Washington northward past the Canadian border. These sedimentary basins are separated by fold-and-thrust belts that occur as broad zones of active thrust faults, strike-slip faults, folds, and uplifted and deformed bedrock and sediments.

The present-day land surface in the Project area reflects deposition of postglacial sediments that lie above glacial and nonglacial sediments that were deposited during the Quaternary Period (within the last 2.6 million years). During episodes of cooler mean global temperatures, continental ice sheets originating in Canada advanced southward covering much of the Puget Lowland with glacial ice over a mile thick in places, and up

to about 3,000 feet thick in the Project Area. Glacial ice and meltwater from the glaciers and glacially impounded Puget Lowland rivers deposited sequences of clayey and silty to sandy glaciolacustrine (glacial lake) deposits in glacially impounded areas, broad sheets of outwash sand and gravel, glacial tills and diamicts (poorly sorted deposits), and sandy to gravelly recessional outwash.

Lake Sammamish resulted from this subglacial meltwater scour and erosion. The slopes above the lake, including those east of Lower Coal Creek, were then modified by normal slope erosion processes including landslides and incision by ravines and drainages from the uplands. Geological mapping indicates the Project area is underlain by Quaternary Alluvium, Mass Wasting Deposits, and Vashon Stade recessional outwash; till, and advance outwash from the Vashon Stade glaciation are mapped on the slopes to the east of the Project area (Booth et. al, 2012).

Artificial fill is not mapped at the Project Area, but is present in the roadway embankment. We did not encounter mass wasting deposits in our explorations. Soil units encountered in soil boring explorations completed at the Project Area are described in more detail below in Section 3.2.

2.3 Seismic Hazards

The Project will be constructed within an area of active tectonic forces associated with the interaction of the offshore Juan de Fuca plate, the Pacific plate, and the onshore North American plate. These plate interactions result in seismic hazards to the Project. Significant hazards include regional ground shaking from subduction zone earthquakes, deep earthquakes, and shallow crustal earthquakes; liquefaction of soft ground; seismically triggered landslides; and the potential for surficial ground rupture.

The Project lies within two miles of the Seattle fault zone. This broad zone of compressional folding and faulting is known to be active, and has ruptured and triggered earthquakes several times during the last 10,000 years. The U. S. Geological Survey (USGS; USGS, 2014) estimates that it is capable of producing earthquakes of magnitude 7.3 or greater. The last large earthquake on this fault system was about 1,100 years ago, and resulted in up to 27 feet of uplift in parts of west Seattle, and surficial ground rupture at Vasa Park east of the Project Area. Faulting was likely associated with surficial ground rupture elsewhere in Bellevue, although most traces of the rupture have been obliterated by erosion and urban development.

The Project Area also lies within the zone of strong shaking from subduction zone earthquakes. The recurrence interval of these earthquakes is thought to be on the order of about 500 years. The most recent subduction zone earthquake occurred about 300 years ago. Deep intraslab earthquakes also occur in the region every decade or two, including the 2001 Nisqually earthquake. These earthquakes are generally less severe than the shallow crustal and subduction zone earthquakes, but have the potential to cause damage to older structures built before modern seismic codes were enacted, and those in areas susceptible to liquefaction.

The Project Area shallow subsurface is underlain by loose gravel, sand, and soft silts that are susceptible to liquefaction during a large earthquake. Liquefaction could result in vertical settlement and lateral displacements of the roadway fill embankment and unconsolidated alluvial sediments.

However, AASHTO and WSDOT standards for design of buried concrete culverts is that they do not need to be designed for seismic effects: AASHTO qualifies this policy for projects that are not along known active faults; WSDOT qualifies this policy for culverts with a span width of less than 20 feet. There are no known active faults crossing the Project Area, and the planned culvert will have a span width of about 12 feet. Therefore, the culvert will not be designed for seismic hazards.

3 Subsurface Conditions

3.1 Field Exploration Program

We completed two machine-drilled borings on December 8 and December 9, 2016. The borings, designated MW-1 and B-2, were completed on either side of the existing culvert and along the proposed replacement alignment (Figure 2). A 2-inch-diameter slotted piezometer was installed in the southwestern boring, MW-1.

The borings were sampled at 2.5-foot intervals from the surface to 20 feet below ground surface (bgs), and sampled at 5-foot intervals from 20 feet bgs to the end of hole. Disturbed soil and bedrock samples were taken using Standard Penetration Testing (SPT) methods for soil density and consistency correlation.

Along the proposed creek re-alignment to the east of ELSP, we completed five shallow borings using hand tools along. These shallow borings, HA-1 to HA-5 were selectively sampled and relative soil density/ consistency measurements taken at depths determined by Aspect field staff. Locations of all borings are shown on Figure 2.

Descriptions of the soils units encountered in the borings, as well as the depths where characteristics of the geology and engineering units changed, are indicated on the exploration logs presented in Appendix A. Definitions of the terminology and symbols used on the logs are included as Appendix A-1.

Selected soil samples were submitted to a subcontracted geotechnical testing laboratory (Materials Testing and Consulting, Inc) to complete index testing consisting of moisture content, grain-size distribution, percent fines content, and organic content. Further description of the soil samples submitted, test methods, and results are presented in Appendix B.

3.2 Stratigraphy

From the roadway surface, we observed a 4-inch-thick layer of hot mix asphalt over a 3inch-thick layer of concrete. Beneath the roadway, we observed roadway embankment fill overlying non-glacially consolidated Quaternary Alluvium and Vashon Stade Glacial Recessional Deposits. Beneath the non-glacially consolidated deposits, we encountered glacially consolidated Glacial till and Glacial outwash of the Vashon Stade. Figure 3 presents a cross-section with our interpretation of geologic conditions across the existing culvert.

3.2.1 Roadway Embankment Fill

Below pavement, both of our borings, MW-1 and B-2 encountered roadway embankment fill (fill) that extended between 5-feet and 5.5-feet bgs. This fill was moist, very gravelly, silty SAND (SM)¹ or slightly silty SAND (SP-SM) and contained scattered organic

¹ Soil Classification per the Unified Soil Classification System (USCS). Refer to ASTM D2488 (ASTM, 2012).

fragments. Embankment fill was not observed in the shallow hand borings to the east of ELSP.

 SPT^2 sampling indicates the fill has medium dense to dense relative density. The fill is expected to exhibit moderate to high shear strength and low compressibility.

3.2.2 Quaternary Alluvium

Quaternary alluvium (alluvium) was encountered below the fill to 21 feet and 25 feet bgs in borings MW-1 and B-2 respectively. Additionally, alluvium was encountered in all the shallow hand borings (HA-1 to HA-5). The alluvium typically consisted of wet, brown and gray, PEAT (PT), SILT (ML), slightly silty SAND (SP-SM), silty SAND (SM), or GRAVEL (GP). Soil units were interbedded with beds between 1 foot and 5 feet thick. The high variability of the soils in the alluvium units is indicative of a low-gradient stream frequently traversing a wetland and floodplain environment.

SPT sampling indicates the alluvium has very loose to medium dense density or soft to medium stiff consistency. The fill is expected to exhibit low shear strength and high compressibility. Under seismic shaking conditions, saturated areas of the alluvium may liquefy.

3.2.3 Glacial Deposits of the Vashon Stade

Recessional Deposits

Vashon Stade glacial recessional deposits were encountered beneath the alluvium to between 35 feet and 36 feet bgs in both borings MW-1 and B-2. Recessional glacial deposits were wet, brown and yellow-brown, SILT (ML), slightly silty SAND (SP-SM), silty SAND (SM), or slightly silty GRAVEL (GP-GM). The variations in soil types within the glacial recessional deposits indicate a variable fluvial and lacustrine environment encounter during glacial recession.

The glacial recessional deposit silt was non-plastic to low plasticity, the sand fraction was fine to coarse, and the gravel fraction was typically fine. SPT sampling indicates the glacial recessional deposits are medium dense to dense. The glacial recessional deposits are expected to exhibit moderate to high shear strength and low compressibility.

Till

Vashon Stade till was encountered beneath recessional deposits from 35 feet to 40 feet in boring MW-1 and from 36 feet to 51.5 feet (end of the boring) in B-2. Till typically consisted of very moist or wet, gray, gravelly, silty SAND (SM) and exhibited a distinctive diamict grain-size distribution and texture.

The till sand fraction was fine to coarse and the gravel fraction was typically fine. SPT sampling indicated the was very dense. The till is expected to exhibit high shear strength and little to no compressibility.

² SPT blow count refers to standard penetration test (SPT) N-values, in accordance with ASTM D1586.

Advance Outwash

Vashon Stade advance outwash was encountered beneath till in boring MW-1 from 40 feet to 46.5 feet (end of the boring). Advance outwash consisted of wet, brown, very gravelly, slightly silty SAND (SM).

The advance outwash sand and gravel fractions were fine to coarse. SPT sampling indicated the advance outwash was very dense and is expected to exhibit high shear strength and little to no compressibility.

3.3 Groundwater

We measured groundwater at 7.5 feet below the pavement in both borings, MW-1 and B-2 during drilling. Subsequently, groundwater was measured at 1-foot bgs in MW-1 on December 15, 2016 at the completion of the monument. On September 26, 2017 we returned to the site and measured groundwater to be 0.7 feet below the pavement. Given these groundwater measurements are higher than the average creek and wetland elevation, we conclude the piezometer screened zone is influenced by a partially confined aquifer layer.

Groundwater levels are expected to vary due to seasonal variations in weather, snowmelt, and the water level of Lake Sammamish.

4 Conclusions and Recommendations

4.1 Pre-Cast Concrete Box Culvert

The new culvert will be placed on the same alignment as the existing metal pipe culvert being replaced. The new culvert will be a four-sided, pre-cast concrete box, with inside dimensions of 12 feet wide by 6 feet tall. The culvert bottom will be covered with imported gravel to simulate a natural streambed. The culvert will be constructed with a six percent slope to approximately match the existing stream gradient, which is approximately 6 percent.

We understand the work will be completed with a combination of single-lane closures of ELSP and complete road closure is limited to two weeks total duration. To minimize the roadway closure period, the Project will utilize pre-cast concrete elements to the maximum extent possible. The contractor will have the option to shore the proposed excavation to reduce impacts of construction in the road sections. We have assumed shoring will be completed using two rows of internally-braced sheet piling.

The current 90 percent plans show the box culvert bottom at approximate Elevation +39 mean sea level (MSL) at the southeast/inlet end, and approximate Elevation +36.5 MSL at the northwest/outlet end.

The recent alluvium encountered in our explorations MW-1 and B-2 revealed interbeds of soft peat extending below proposed culvert bottom. Peat is highly compressible when loaded, and it exhibits significant long-term settlement, or secondary compression, characteristics.

In our boring B-2 on the north side of the culvert, a loose sandy peat interbed was encountered that extended down to approximate Elevation +31 feet MSL. In boring MW-1 on the south side of the culvert, very soft to medium stiff peat with variable sand and gravel content, was encountered extending down to approximate Elevation +28 feet MSL. Below these elevations, the alluvium is granular and mostly free of peat (in B-2) or recessional outwash sand exists, which is also free of peat (in MW-1).

The base of the proposed culvert is anticipated to range from Elevation +36.74 to +38.87 feet MSL. The bottom of peat is anticipated to range from Elevation +28 to +31 feet MSL.

4.1.1 Estimated Settlement if Peat is not Removed

We performed three-dimensional settlement analyses to model settlement as a result of loading the peat-rich alluvium with the proposed box culvert, leaving the peat in place with a 36-inch thick gravel pad installed below the culvert bottom. We utilized the program Settle 3D (Rocscience, 2017) to model and evaluate the presence of the culvert, the gravel bearing pad, the imported streambed gravel, imported granular backfill against the culvert walls, and granular fill and pavement over the top of the culvert. These analyses considered the rigidity of the four-sided box culvert, with interlocking joints.

The analyses predicted total settlements under the rigid box culvert of about 3 to 4 inches after 12 months, and 5 to 6 inches after 24 months, with no appreciable consolidation settlement thereafter. The rigidity of the four-sided box culvert, combined with relatively

uniform subsurface conditions, are such that settlements should be relatively uniform across its width and length. However, moving away from the box culvert in the direction parallel to the roadway, the analyses predict settlement will taper over about 14 feet (the culvert width), with no appreciable settlement beyond these points. With respect to the culvert, from structural and stream flow capacity perspectives, we believe these predicted settlements are tolerable. However, through coordination with OTAK and the City of Sammamish, from roadway and buried utility serviceability perspectives, this magnitude of settlement is unacceptable.

4.1.2 Sub-Excavation of Peat

Sub-excavation of the alluvial peat from below the box culvert, and replacement with angular crushed rock, will limit the expected settlement to less than one inch. The Peat sub-excavation would extend down to target Elevation +28 feet MSL replacing the sub-excavation with quarry spalls and crushed rock back up to culvert bottom elevation.

The 5¹/₂- to 8-foot deeper sub-excavation will increase the size of the temporary excavation, and will lengthen the project duration, but will essentially eliminate future roadway and buried utility serviceability issues at this crossing location.

Sub-excavation of the peat can be completed in the wet using a long-reach excavator. Sounding in the wet using a weighted tape and/or a long-handled steel soil probe would be done to confirm the peat is adequately removed and granular materials are exposed at the target subgrade Elevation +28 feet MSL.

The sub-excavation would be replaced in the wet using clean quarry spalls as specified in Section 9-13.1(5) of the WSDOT Standard Specifications. The clean quarry spalls would be placed in the wet, and tamped into place with the long-reach excavator bucket. The quarry spalls would then be capped with crushed surfacing base course, as specified in Section 9-03.9(3) of the WSDOT Standard Specifications. The CSBC cap would be graded to a uniform slope condition providing a smooth base for the box culvert. We recommend the CSBC cap be 24 inches thick. The CSBC would need to be placed and compacted in the dry; thus, the excavation would need to be dewatered to at least 2 feet below the culvert bottom.

There will be some mixing and migration of smaller CSBC aggregate into voids at the top of the quarry spalls during placement and vibratory compaction. However, a granular filter will develop in the interface of these layers that will stabilize during placement and compaction. There should be no appreciable settlement after the We recommend the bid quantity for CSBC include a 50% increase (for an effective thickness of 3 feet) to account for mixing and migration of material.

If a complete peat sub-excavation and replacement with quarry spalls and crushed surfacing were completed in the manner described above, total and differential postconstruction settlements are expected to be less than one inch.

4.2 Culvert Wing Walls

The 90 percent plans call for 10- to 13-foot-long, pre-cast concrete cantilever wing walls extending at 45 degrees away from the culvert centerline. The retained height of soils behind the wingwalls will vary from about 10 or 12 feet where they tie in to the culvert, to about 7 to 8 feet at the opposite ends.

The planned sub-excavation and replacement of peat with compacted gravel from below the box culvert to the full extent of the peat Elevation +28, will largely mitigate the potential for differential settlement where the wingwalls connect to the box culvert. However, it may be impractical to sub-excavate and replace the peat to Elevation +28 under the entire wingwalls.

Our analyses indicate that constructing pre-cast concrete cantilever walls over the existing peat-rich alluvium will result in differential settlement along the length of the walls. If the wingwalls were not structurally connected to the culvert, differential wingwall movement could appear as outward wall rotation, or differential in-plane rotation/movement, either of would tend to cause gaps to form between segments and between the wingwall and the box culvert. The magnitude of total and differential settlement could be in the range of several inches, and settlements will be highly differential given the variation in exposed heights of the walls and steps in foundation elevation moving away from the culvert.

In our opinion, to avoid such aesthetic issues with differential wingwall movement, we recommend the wingwall panels be structurally connected (to the culvert and individual segments to one-another) using epoxy-doweled anchors and structural steel clips.

We recommend that a 24-inch-thick leveling pad of compacted crushed surfacing base course should be placed under each pre-cast concrete wingwall footing. The CSBC pad should extend the full width of the footing under all of the wingwalls.

4.3 Temporary Excavations and Construction Dewatering

It is understood that a bypass of Zackuse Creek will be installed during construction. The bypass will collect and divert creek water in a temporary force main to a discharge location downstream from the project. Our piezometer reading taken in December 2016 encountered groundwater about 1 foot below the roadway pavement. We expect groundwater at the Project area will be highly influenced by creek flow and the time of year. Stream diversion will likely bring down the water level appreciably; however, construction dewatering will still be necessary to complete this culvert replacement project.

Ideally construction would be completed during the late summer or early fall months, when groundwater levels are typically at seasonally lowest levels. Aspect is not currently aware of any fish or shoreline permit construction window limitations that may further constrain the construction schedule.

4.3.1 Temporary Shoring Using Sheet Piling

Given the project will mostly be completed with a combination of single lane road closures, we anticipate temporary shoring using sheet piling will be most economical for the Project. We recommend rows of interlocking steel sheet piling, installed parallel to the culvert, and would be internally braced using walers and struts. The contractor should be required to design and install the temporary shoring. Recommended lateral earth pressures for use in temporary shoring design are provided in Figure 4. The sheet piling should be installed using a vibratory hammer to minimum tip Elevation +13 feet (15 feet below the target sub-excavation depth). This tip elevation approximately coincides with the top of the Vashon Till which was encountered in both borings MW-1 and B-2 at approximate Elevation +14 feet. In our opinion, it will be possible to advance the sheet piling about 1 foot into the Vashon Till.

After the box culvert is set and the spaces between the box culvert and sheets have been backfilled, the sheet piling should be removed. Alternatively, with approval from the City, the sheet piling could cut off a sufficient depth below the finished roadway surface, and left in the ground.

4.3.2 Open Cuts

The existing fill and alluvium classifies as Type C Soil per Washington Administrative Code (WAC) 296-155 Part N. Temporary cuts in Type C Soil not greater than 20 feet deep, should be inclined no steeper than 1½H:1V (horizontal:vertical). Flatter slopes are required where groundwater seepage exists, if traffic or construction surcharges are present, or where less stable soils are present. It is the Contractor's responsibility to design and construct the temporary excavation and complete the work safely and in accordance with state safety regulations.

4.3.3 Construction Dewatering

Construction dewatering can be accomplished with the aid of a wellpoint eductor system. This consists of a series of small diameter slotted steel pipes that are driven or jetted vertically into the ground along both sides of the temporary excavation, on a horizontal spacing of typically about six feet. At the surface, the vertical well points would be connected to a surface-mounted header system which is in turn attached to a large pump which applies a vacuum to the wellpoints. The practical maximum depth of drawdown with a wellpoint eductor system is typically about 20 feet.

For this project, assuming sheet piling is utilized, the wellpoints would be installed just inside (stream-side) of the sheet piling, in the recessed/fluted area of sheet piling. The upper-most waler that is attached to inside face of the sheet piling can be used to support the header system.

4.4 Structural Fill

The existing Project area soils have a high percentage of organics and silt/clay and therefore they will be unsuitable for re-use as structural fills.

A variety of imported structural fills will be required/recommended for this project. Recommendations for these various materials are provided here

- Quarry spalls placed below "in the wet" or groundwater, under the box culvert should conform to the gradation requirements of Section 9-13.1(5) of the WSDOT *Standard Specifications*. The quarry spalls should extend from approximate Elevation +28 feet to two feet below the bottom of the box culvert.
- Gravel pad material, that will be placed under pre-cast concrete wingwall segments, and directly under the four-sided box culvert, should consist of Crushed Surfacing Base Course, as specified in Section 9-03.9(3) of the WSDOT *Standard Specifications*. Crushed surfacing is also appropriate for use as base course under the restored pavement section. The CSBC pad, below both the box culvert and the pre-cast concrete wingwalls, should be 24 inches thick. We recommend a 50% increase be included in the bid quantity for CSBC placed over the quarry spalls, to account for initial loss of finer material into the quarry spall voids.
- For wall backfill placed against the culvert walls or the pre-cast concrete wing wall segments, we recommend Gravel Backfill for Walls, as specified in Section 9-03.12(2) of the WSDOT *Standard Specifications*.
- Streambed gravel will be determined by OTAK; but Streambed Sediment is described in Section 9-03.11(1) of the WSDOT *Standard Specifications*. This material is not considered structural fill.

All structural fills placed as wall backfill or as a foundation/leveling pad should be placed in horizontal lifts and compacted to a dense and unyielding condition.

4.5 Stream Re-Alignment Considerations

The Project includes re-alignment of Zackuse Creek toward the north with a more favorable approach to the culvert. Our hand auger explorations encountered recent alluvium consisting mostly of silty sand and silty gravel, with occasional peat interbeds.

We recommend the new stream channels be constructed with 3H:1V permanent sideslopes. To reduce scour and erosion issues with the fine-grained alluvium, the constructed stream bottom should be armored/protected with imported gravel such as streambed sediment. The 90 percent plans have incorporated these recommendations.

We understand the stream profile will include several boulder-lined drops (boulder steps) which will facilitate grade changes and allow for flatter, more habitable, stream segments. We have no comments on this from a geotechnical engineering perspective.

4.6 Continuing Engineering Support

We have prepared this final draft report to formalize our conclusions and recommendations to date and to accompany the 90 percent plan set. Aspect will

collaborate with the design team and City of Sammamish to refine and finalize any outstanding geotechnical engineering issues related to the design. We request any review comments or requests on this final draft report, which will be addressed in our final geotechnical engineering report.

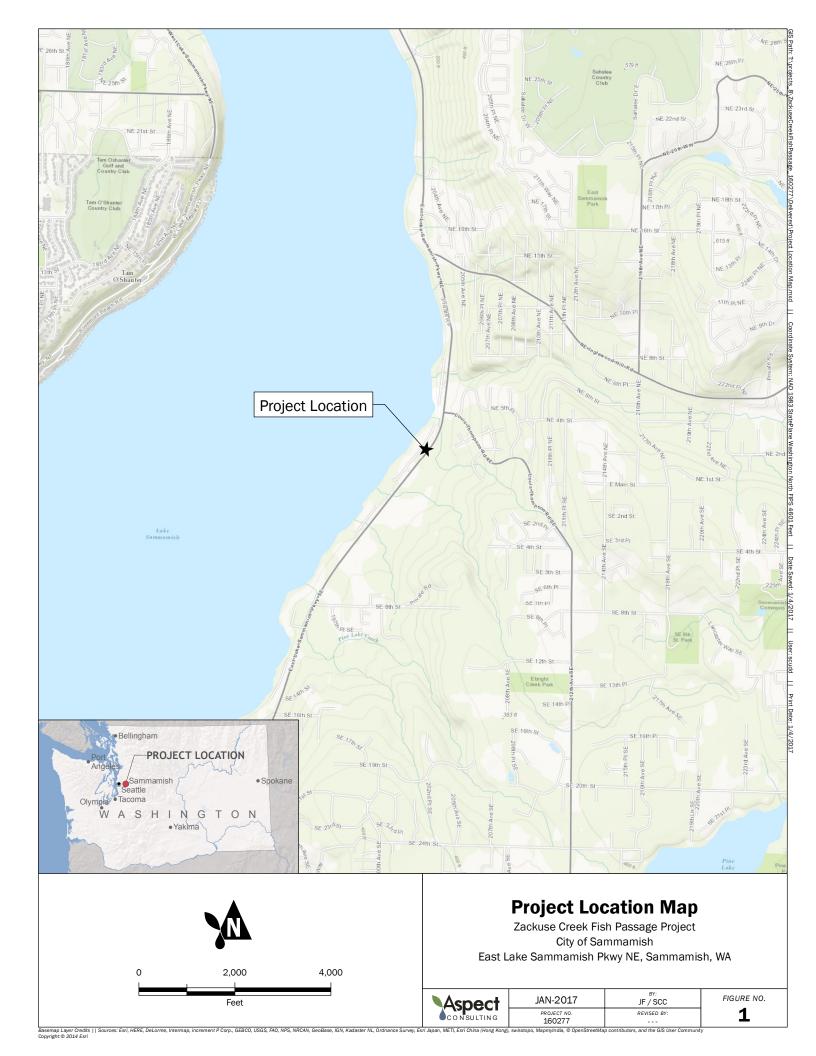
References

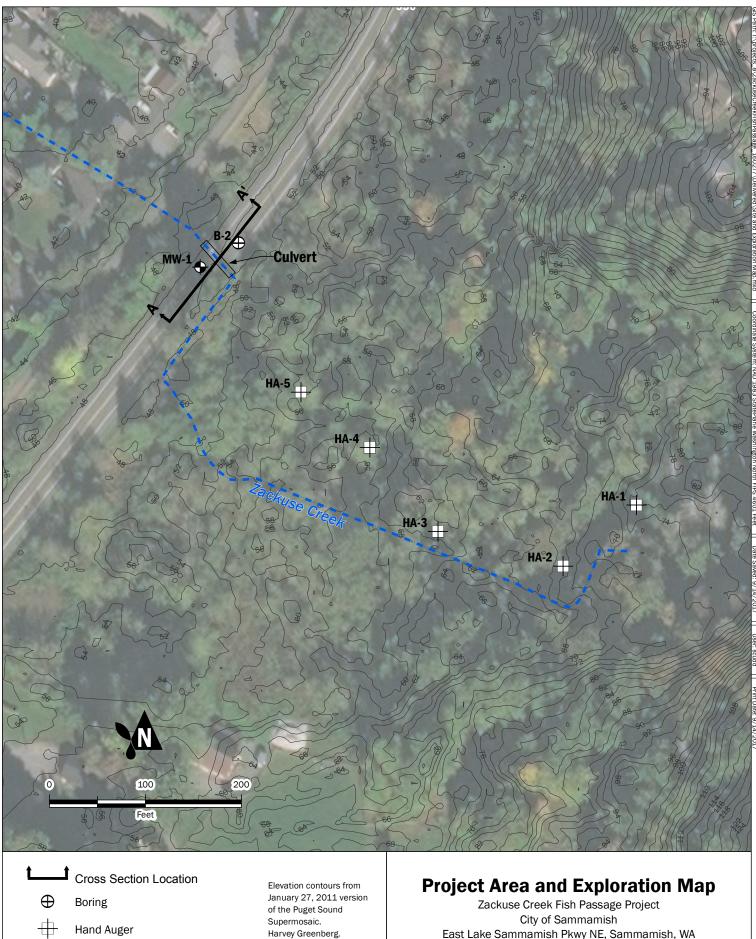
- American Association of State Highway and Transportation Officials (AASHTO), 2014, LRFD Bridge Design Specifications, Seventh Edition, Customary U.S. Units.
- Booth, D.B., Walsh, T.J., Goetz Troost, K., and Shimel, S.A., 2012, Geologic map of the east half of the Bellevue South 7.5' x 15' quadrangle, Issaquah area, King County, Washington: U.S. Geological Survey Scientific Investigations Map 3211, scale 1:24,000.
- American Society for Testing and Materials (ASTM), 2012, American Society of Testing Materials Annual Book of Standards, Vol. 4.08, West Conshohocken, Pennsylvania.

Rocscience, 2017, Settle 3D Analysis Program, version 4.005, build date Nov 10, 2016.

- U.S. Geological Survey (USGS), 2014, U.S. Seismic Design Maps Website accessed on November 1, 2016, http://earthquake.usgs.gov/designmaps/us/application.php.
- Washington State Department of Transportation (WSDOT), 2016, Standard Specifications for Road, Bridge and Municipal Construction, Document M 41-10.

Limitations

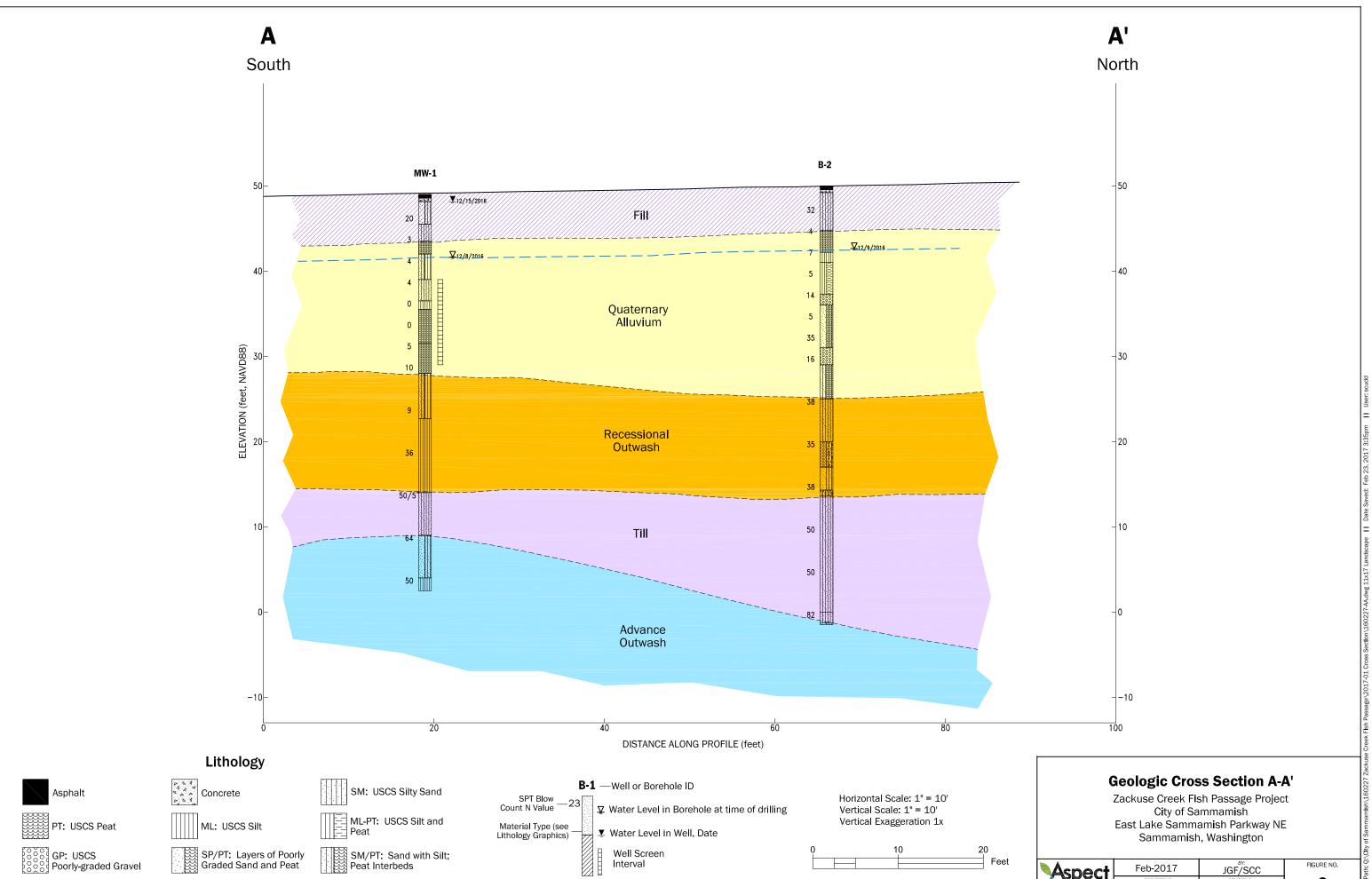

Work for this Project was performed for OTAK Inc and the City of Sammanish (Client), and this report prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed.


All reports prepared by Aspect Consulting are intended solely for the Client and apply only to the services described in the Agreement with Client. Any use or reuse by Client for purposes outside of the scope of Client's Agreement is at the sole risk of Client and without liability to Aspect Consulting. Aspect Consulting shall not be liable for any third parties' use of the deliverables provided by Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

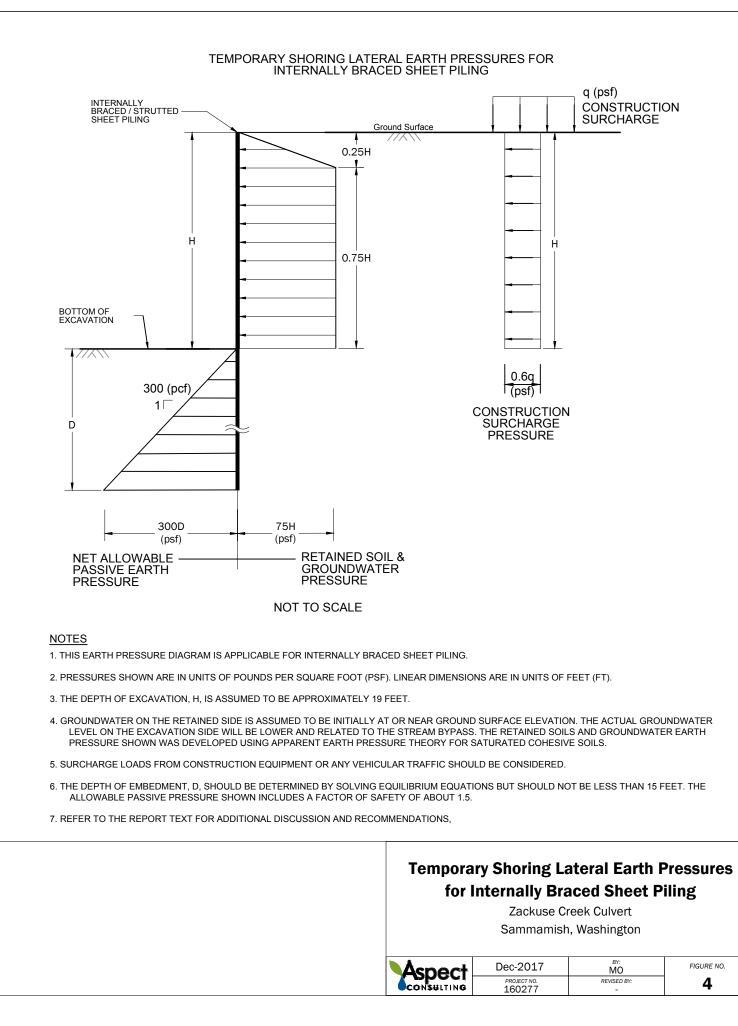
This report and our conclusions and interpretations should not be construed as a warranty of the subsurface conditions. Experience has shown that subsurface soil and groundwater conditions can vary significantly over small distances. Inconsistent conditions can occur between explorations and may not be detected by a geotechnical study. Further geotechnical evaluations, analyses and recommendations may be necessary for the final design of this Project.

If there is a substantial lapse of time between the submission of this report and the start of construction, or if conditions have changed due to construction operations at or near the Site, it is recommended that this report be reviewed to determine the applicability of the conclusions and recommendations considering the changed conditions and time lapse.

FIGURES


East Lake Sammamish Pkwy NE, Sammamish, WA

JF / SCC FIGURE NO. SEP-2017 Aspect CONSULTING ^{ркојест но.} 160277 2 REVISED BY


Basemap Layer Credits || Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Monitoring Well

Elevation Contours (2 Ft Interval)

	Feb-2017	JGF/SCC	FIGURE NO.
CONSULTING	PROJECT NO. 160227	REVISED BY:	3

B

APPENDIX A

Subsurface Explorations

A.1 Field Exploration Program

A.1.1 Geotechnical Borings

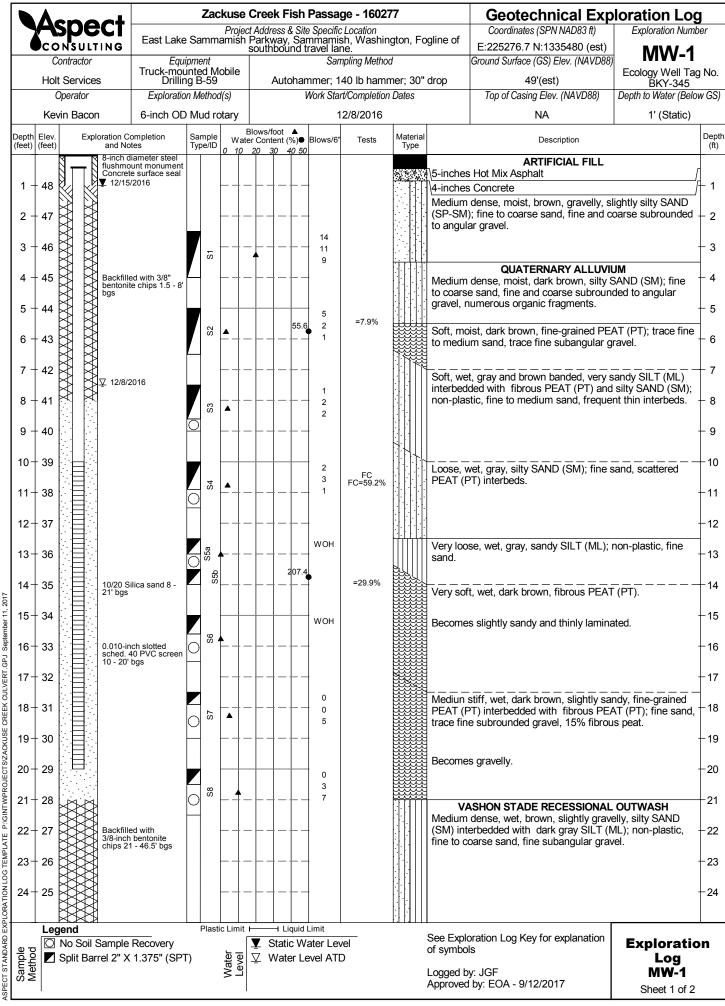
Between December 8 and December 13, 2016, we performed a site reconnaissance, completed two machine drilled geotechnical soil borings, and completed five shallow borings with hand tools.

The machine drilled borings were advanced using a truck-mounted Mobile Drill B-59 rotary drill rig using 6-inch outer diameter mud-rotary methods. The borings were sampled at selected depth intervals using the Standard Penetration Test (SPT) in general accordance with ASTM method D158. The locations of the borings are shown on Figure 2 of the report.

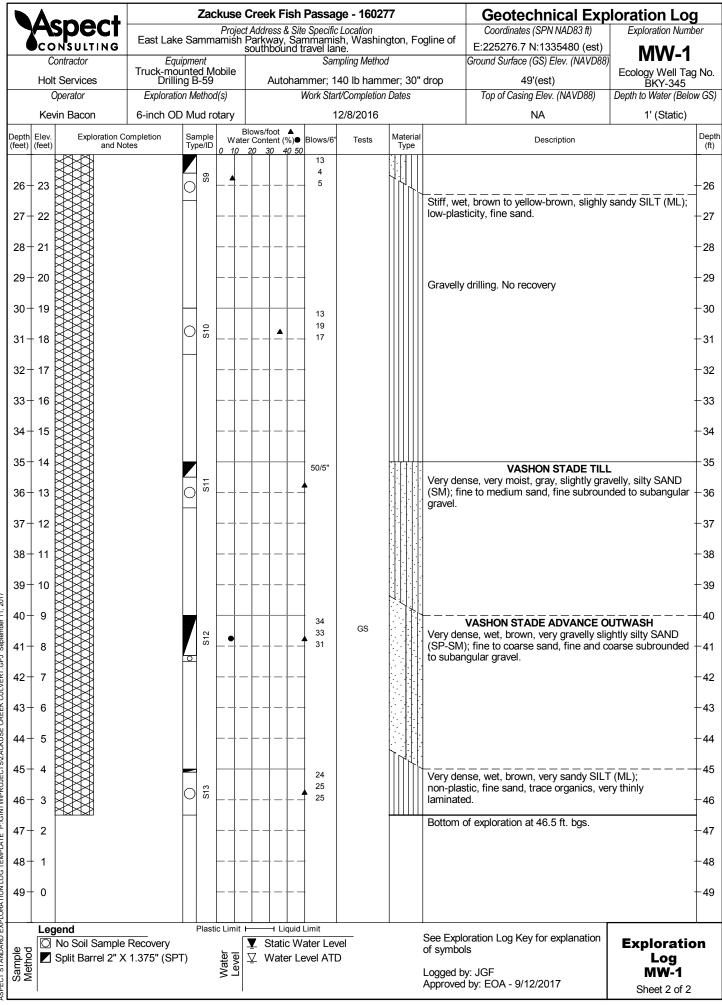
SPT sampling involves driving a 2-inch outside diameter split-barrel sampler 18-inches into the soil with a 140-pound hammer free-falling from 30-inches (the drill rig employed on this project used an automatic-trip hammer). The number of blows for each 6-inch interval is recorded and the number of blows required to drive the sampler the final 12 inches is known as the Standard Penetration Resistance ("N") or blow count. The resistance, or N-value, provides a measure of the relative density of granular soils or the relative consistency of cohesive soils.

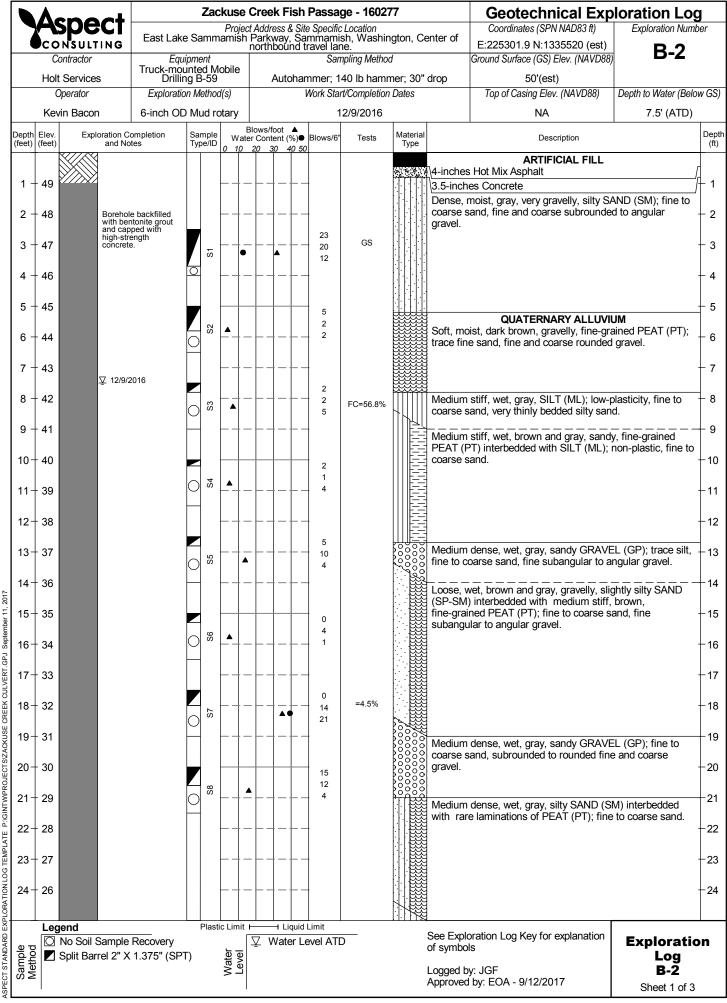
The shallow borings with hand tools were advanced using a 2.5-inch outer diameter hand auger. The hand auger was advanced at 6-inch intervals and a continuous, disturbed sample of the subsurface is obtained. Grab samples are taken at intervals determined by the Aspect field representative. Relative density is tested at selected depths by using a Dynamic Cone Penetrometer (DCP). The DCP test involves driving a 1.5-inch diameter steel-tipped cone 1.75-inches using a 15-pound anvil with a 20-inch drop. The number of blows for each 1.75-inch interval is recorded. The number of blows is correlated to resistance and provides a means of estimating soil density

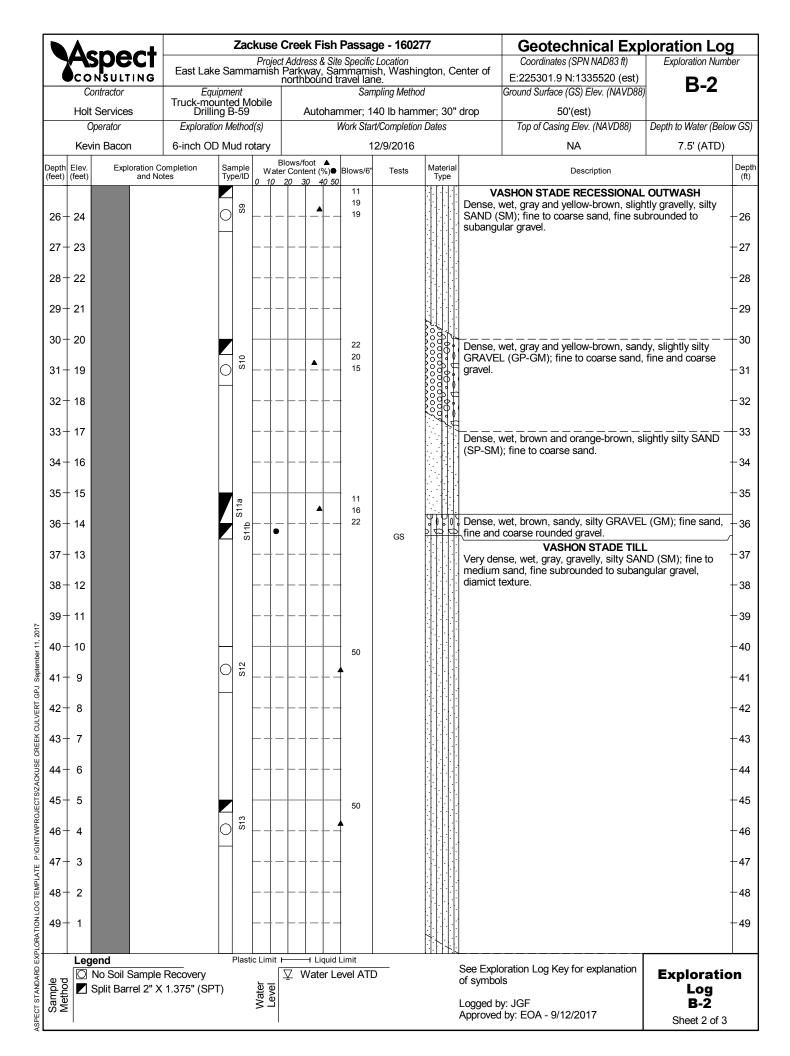
An Aspect Consulting geologist was present throughout the field exploration program to observe the drilling procedure, assist in sampling, and to prepare descriptive logs of the exploration. Soils were classified in general accordance with ASTM D2488, *Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)*. The summary exploration log represents our interpretation of the contents of the field logs. The stratigraphic contacts shown on the individual summary logs represent the approximate boundaries between soil types; actual transitions may be more gradual. The subsurface conditions depicted are only for the specific date and locations reported, and therefore, are not necessarily representative of other locations and times.


			۱٩	Well graded gravel and	Torme De	coribing D	alativa Dong	situ and Cancistanov
	Fraction		GW	Well-graded gravel and gravel with sand, little to no fines	Coarse-	Density Very Loose	SPT ⁽²⁾ blows/for 0 to 4	ot <u>Test Symbols</u> <u>FC = Fines Content</u>
0 Sieve	⁽¹⁾ f Coarse Fraction Vo. 4 Sieve	≤5% F	o o o o GP	Poorly-graded gravel and gravel with sand, little to no fines	Grained Soils	Loose Medium Dense Dense Very Dense	4 to 10 10 to 30 30 to 50 >50	G = Grain Size M = Moisture Content A = Atterberg Limits
Retained on No. 200 Sieve	Gravels - More than 50% ⁽¹ Retained on No.	Fines ⁽⁵⁾ <u>0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>	GM	Silty gravel and silty gravel with sand	Fine- Grained Soils	Consistency Very Soft Soft Medium Stiff	SPT ⁽²⁾ blows/for 0 to 2 2 to 4 4 to 8	ot DD = Dry Density K = Permeability Str = Shear Strength Env = Environmental
	Gravels - M F	≥15%	GC	Clayey gravel and clayey gravel with sand		Stiff Very Stiff Hard	8 to 15 15 to 30 >30	PiD = Photoionization Detector
Coarse-Grained Soils - More than 50%		Fines ⁽⁵⁾	SW	Well-graded sand and sand with gravel, little to no fines	Descriptive Te Boulders Cobbles	rm Size Ra	ponent Definance and Sieve	
ined Soils - N	Sands - 50% ⁽¹)br More of Coarse Fraction Passes No. 4 Sieve	≤5% F	SP	Poorly-graded sand and sand with gravel, little to no fines	Gravel Coarse Gravel Fine Gravel Sand	3" to 3/ 3/4" to No. 4 (No. 4 (4.75 mm) 4.75 mm) to No. 2	
Coarse-Gra	0% ⁽¹ br More Passes No.	Fines ⁽⁵⁾	SM	Silty sand and silty sand with gravel	Coarse Sand Medium Sand Fine Sand Silt and Clay	No. 10 No. 40	4.75 mm) to No. 1 (2.00 mm) to No. (0.425 mm) to No r than No. 200 (0.0	40 (0.425 mm) . 200 (0.075 mm)
	Sands - 5	≥15%।	sc	Clayey sand and clayey sand with gravel	⁽³⁾ Estimated Percentage by Weight	d Percenta <u>o</u> <u>Mod</u>	-	Moisture Content Dry - Absence of moisture, dusty, dry to the touch
eve	s an 50		ML	Silt, sandy silt, gravelly silt, silt with sand or gravel	<5 5 to 15	•	tly (sandy, silty, y, gravelly)	Slightly Moist - Perceptible moisture Moist - Damp but no visible water
Passes No. 200 Sieve	Silts and Clays iouid Limit Less than 50		CL	Clay of low to medium plasticity; silty, sandy, or gravelly clay, lean clay	15 to 30 30 to 49	Sand grave Very	ly, silty, clayey,	Very Moist - Water visible but not free draining Wet - Visible free water, usually from below water table
⁽¹) ^o r More Passe	Si Liquid L		OL	Organic clay or silt of low plasticity	Sampler	Blows/6" or portion of 6"	Symbols	Cement grout surface seal Bentonite chips
	s More		МН	Elastic silt, clayey silt, silt with micaceous or diato- maceous fine sand or silt	2.0" OD Split-Spoon Sampler (SPT)	Continuous Pu		Grout Grout Grout Seal Filter pack with
Fine-Grained Soils - 50%	Silts and Clays Lignid Limit 50 or More		сн	Clay of high plasticity, sandy or gravelly clay, fat clay with sand or gravel	Bulk sample	(including Shell	all Tube Sampler	Grouted Grouted Filter pack
Fine-(он	Organic clay or silt of medium to high plasticity	(1) Percentage by c (2) (SPT) Standard	Portion not reco		 (5) Combined USCS symbols used for fines between 5% and 15% as
Highly	Organic Soils		PT	Peat, muck and other highly organic soils	(ASTM D-1586) (3) In General Acco Standard Practic	rdance with ce for Description n of Soils (ASTM	D-2488)	estimated in General Accordance with Standard Practice for Description and Identification of Soils (ASTM D-2488)
				rt are based on visual field and/or labo		<u> </u>	ATD = At time of di tatic water level (d	ate) surface

Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

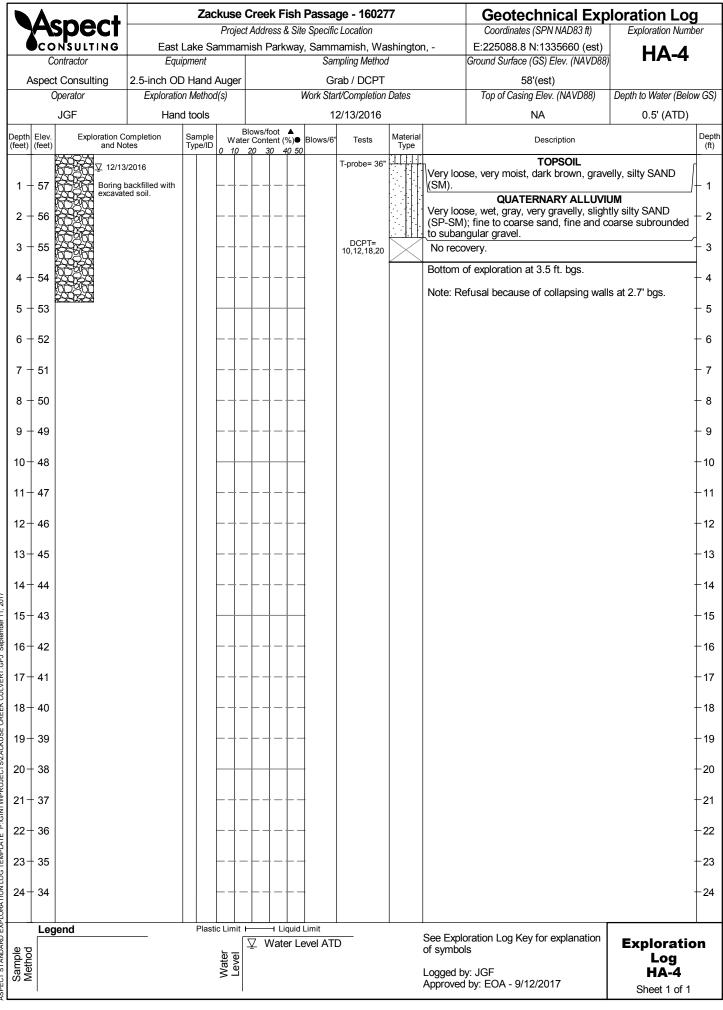

Exploration Log Key


DATE:	PROJECT NO.
DESIGNED BY:	
DRAWNBY:	FIGURE NO.
REVISED BY:	A-1


CREEK CULVERT.GPJ ASPECT STANDARD EXPLORATION LOG TEMPLATE P:/GINTWPROJECTS/ZACKUSE

ASPECT STANDARD EXPLORATION LOG TEMPLATE P:\GINTWPROJECTS\ZACKUSE CREEK CULVERT.GPJ September 11, 2017

September 11, ASPECT STANDARD EXPLORATION LOG TEMPLATE P:/GINTWPROJECTS/ZACKUSE CREEK CULVERT.GPJ



	Δc	pect									ge - 16027			Geotechnical Exp	loration Log	g
7	CON	SULTING	East Lak	e Samr	Pro mam	ojec ish	t Addı Park north	ress a way ibou	s Site , Sa nd ti	e Specific mmami ravel lar	<i>Location</i> sh, Washir ne.	igton, C	enter of	Coordinates (SPN NAD83 ft) E:225301.9 N:1335520 (est)	Exploration Num	nber
		ntractor Services	Equ Truck-mo	uipment	Nobil					Sar	npling Metho 40 lb hamr	d		Ground Surface (GS) Elev. (NAVD88) 50'(est)	D-2	
		perator	Explorati	•							rt/Completion			Top of Casing Elev. (NAVD88)	Depth to Water (Belo	low
	Kevir	n Bacon	6-inch Ol	D Mud r	rotar	,	lows/	64		1	2/9/2016		1	NA	7.5' (ATD)	
	Elev. (feet)	Exploration (and N	Completion otes	Sample Type/IE	י ור	Nate	r Con 20	tent (%)●		Tests	Material Type		Description		
51-	1			S14			-	-		28 40 42	FC=19.5%			ense, wet, gray, silty SAND (SM); ace organics, iron-oxide staining.	fine to medium	-
52-	2			Η		<u> </u> _		<u> </u>	L_			<u></u>		ense, wet, gray, gravelly, slightly s 1); fine to coarse sand, fine subar		ſ
													Bottom	of exploration at 51.5 ft. bgs.		
53-	3								[
54-	4					1-	-	+								t
55-	5									-						t
56-	6					+-	-	-		ł						+
57-	7						-	_								+
58-	8					+-		-	<u> </u>							+
59-	9						-	_	<u> </u>							+
50-	10															+
51-	11						-	_	<u> </u>							+
52-	12							_		ł						+
63-	13						-	_								+
64 -	14							_	 							
	15															
	16					<u> </u> _		_								
	17					Ī										Ī
	18					1-	-	1-	<u> </u>	1						t
59- -	19					1-	-	-		İ						t
70-	20															+
71-	21					+-	-	-	+-							+
72-	22					+-	-									+
73-	23					+-	-	_	<u> </u>							+
74-	24					+-		-	┣-							+
	Lege	end		Plas	stic Lii	mit I		 	quid	Limit						
Sample Method		lo Soil Sample plit Barrel 2" >			Water	Γ			-	evel ATI	<u> </u>		of symbol		Exploration Log B-2	or

● CoNsturtING East Late Sammanish Parkay, Sammanish Washington, - E.22028 N 1335840 (25 km, NU288) PAA-1 Appet Consulting 2.5-rbh OD Hand Auge Grad / Core Triper Coloradius Triper Coloradius 0 and Subic (25 km, NU288) Parkay, Sammanish ng Parkay, Sammanish Parkay, Sammanish Parkay, Sa		spect			Zac							ge - 16027	7				Geotechnical Coordinates (SPN NAD83		oration Log Exploration Num	g
Contractive Experiment Sumpting Method Contractive Experiment Sumpting Method Contractive Contractive <th></th> <th>DNSULTING</th> <th>Fast</th> <th>l ak</th> <th>ke Sa</th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ishi</th> <th>nato</th> <th>n</th> <th></th> <th></th> <th></th> <th></th> <th>vel</th>		DNSULTING	Fast	l ak	ke Sa		•						ishi	nato	n					vel
Upper Engination Methods Work Start/Completion Dates Top of Casing Disc, (MAU088) Duple its Matter (B, 12/13/2016) 1										may				igio	· · ·,				HA-1	
Upper lange Exploration Method (k) Wink Start/Completion Dates Top of Casing Disc, MAU088 Duple in Method (k) 3.1' (ATD 1 -75 September Completion September Completion Top of Casing Disc, MAU088 Disc, MAU088 3.1' (ATD 1 -75 September Completion September Completion Top of Casing Disc, MAU088 Disc, MAU088 Disc, MAU088 Disc, MAU088 3.1' (ATD 2 -74 September Completion September Completion Top of Casing Disc, MAU088 Disc, MAU0	Aspec	ct Consultina				Aua	er											ή		
Hand Description Barry B Weight Exclusion considerion Description 1 -75 Second and second sec						-								es				88)	Depth to Water (Beld	w
Note: Construction Water Content (No. Non-Wing) Non-Wing Description 1 1 7 Some Description Some Description Test Some Description Test Some Description 2 7 Some Description Some Description Test Some Description Test Some Description 2 7 Some Description Some Description Test Some Description Test Some Description 2 7 Some Description Some Description Test Some Description Test Some Description 3 73 Some Description Some Description Test Some Description Test Some Description Test Some Description 4 72 Some Description Some Description Test Some Description Test Some Description Test Some Description 6 70 65 7 66 7 67 68 8 66 9 67 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		JGF	Har	nd to	ols						1	2/13/2016					NA		3.1' (ATD)	
1 75 000000000000000000000000000000000000				Sa Typ	mple pe/ID		/ate	r Con	tent ((%)		Tests			I		Description			
2 74 2 74 2 5 1	1 - 75	CONC CONC CONC Boring	backfilled with							40 50	_	T-probe= 14"	0		έh(SΜ	1); fir	moist, dark brown, slightly (ne to medium sand, fine su	gravelly	, very silty SAND	
3 - 73 22 12/132016	2 - 74		ed Soll.	E.	s S1				-			DCPT= 2,3,3	00 00 		Loo	se, n rse s	moist, brown, sandy, silty G	RAVEL	(GM); fine to subangular	Г Г
4 72 1	3 - 73	00000 0000 00000 00000 00000 00000 00000	8/2016						-			DCPT= 5.6			Very (SM	y loo: 1); fir	ne to medium sand, fine an	vn, grav Id coars	velly, silty SAND se rounded to	1
6 70 7 69 8 68 9 67 10 66 11 65 12 64 13 63 14 62 15 61 16 60 17 59 18 58 19 57 20 56 21 55 22 54 23 53 24 52									-			DGF 1= 3,0			Bec	ome	es wet at 3.1' bgs.			+
$ \begin{array}{c} - 70 \\ 7 + 69 \\ 8 + 68 \\ 9 + 67 \\ 10 - 66 \\ 11 - 65 \\ 12 - 64 \\ 13 - 63 \\ 14 - 62 \\ 15 - 61 \\ 16 - 60 \\ 17 - 59 \\ 18 - 58 \\ 19 - 67 \\ 17 - 59 \\ 18 - 58 \\ 19 - 67 \\ 19 - 67 \\ 20 - 56 \\ 21 - 55 \\ 21 - 55 \\ 22 - 54 \\ 21 - 55 \\ 22 - 54 \\ 21 - 55 \\ 22 - 54 \\ 21 - 55 \\ 22 - 54 \\ 21 - 55 \\ 22 - 54 \\ 21 - 55 \\ 22 - 54 \\ 21 - 55 \\ 22 - 54 \\ 21 - 55 \\ 22 - 54 \\ 21 - 55 \\ 22 - 54 \\ 21 - 55 \\ 22 - 54 \\ 21 - 55 \\ 21 -$	5 + 71										1									t
8 68 9 67 10 66 9 67 11 65 9 67 12 64 9 9 13 63 9 9 14 62 9 9 15 61 9 9 16 60 9 9 17 59 9 9 18 58 9 9 19 57 9 9 20 56 9 9 21 55 9 9 22 54 9 9 24 52 9 9	6 - 70						-	-	-						Note	e: Re	efusal due to coarse gravel			+
9 67 10 66 11 65 12 64 13 63 14 62 15 61 16 60 17 59 18 58 19 57 20 56 21 55 22 54 23 53 24 52																				
111 - 65 12 - 64 13 - 63 14 - 62 15 - 61 16 - 60 17 - 59 18 - 58 19 - 57 20 - 56 21 - 55 22 - 54 23 - 53 24 - 52																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10+66																			
13 - 63 14 - 62 15 - 61 16 - 60 17 - 59 18 - 58 19 - 57 20 - 56 21 - 55 22 - 54 23 - 53	11 - 65						-		-											+
14-62 15-61 16-60 17-59 18-58 19-57 20-56 21-55 22-54 23-53 24-52																				+
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									_											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											-									-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 + 60							.	-											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 + 59						_													+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-	-		-									T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									_											
							-		-											
24 - 52	22 - 54								-											+
	23 - 53						_		-											
	24 + 52								_											+
Legend Plastic Limit Liquid Limit See Exploration Log Key for explanation of symbols Exploration Log Key for explanation of symbols	6001				l Plasti		Γ.					D	1		of sy	mbo	ls	ation	Exploratio Log HA-1	 1C

	Δ	snart		Zac							ge - 16027	7		Geotechnical Exp	Ioration Log	g
7		spect			-						CLocation		_	Coordinates (SPN NAD83 ft)	Exploration Numb	
		ontractor		Lake Sa	amma	ami	ish F	Park	way		namish, Wa npling Methor		n, -	E:224965.2 N:1335860 (est) Ground Surface (GS) Elev. (NAVD88)	HA-2	
					Δ											
А		t Consulting	2.5-inch OE Exploration		-	er			- 1		ab / DCPT	Dates		67'(est) Top of Casing Elev. (NAVD88)	Depth to Water (Below	
	,	JGF	-	d tools	1(3)						2/13/2016	Dales		NA	1' (ATD)	/ • •
						BI	ows/f	oot	•						T (ATD)	Т.
epth eet)	Elev. (feet)	Exploration C and N		Sample Type/ID	Wa 0 10					Blows/6"	Tests	Material Type		Description		[
1 -	- 66		સંદર્ભિાed with ited soil.			_		-		-	T-probe= 6"		fine to c	QUATERNARY ALLUVIU very moist, dark brown, sandy, sil coarse sand, fine and coarse rour	ty GRAVEL (GM); ded to subangular,	· í
2 -	- 65					_		-		-			Loose,	wet, dark brown, sandy, No recov	ery	t
3 -	- 64					_		-		_	DCPT= 5,8,9,10,11	$/ \setminus$				
4 -	- 63				┝┤	_		-	+-	1			Bottom	of exploration at 3.8 ft. bgs.		1
5 -	- 62												Note: H collapsi	ole collapsing from 1' bgs; refusa ng walls.	because of	+
6 -	- 61				$\left - \right $	_		-		-						+
7 -	- 60				$\left - \right $	_		-								ł
8 -	- 59				$\left - \right $	_		-	+-							+
9 -	- 58				$\left - \right $	_		-	+-	-						+
0-	- 57				$\left \right $					-						+
1-	- 56				$\left - \right $	_		-	+-	-						+
2-	- 55				$\left - \right $	_		-								+
3-	- 54				$\left - \right $	_		-	+-	-						+
	- 53				$\left - \right $	_		-	+-	-						+
	- 52									-						t
	- 51				$\left - \right $	_		-	<u> </u>	-						ł
	- 50				$\left - \right $	_		-	+-	-						Ì
	- 49				$\left \right $	_		-	<u> </u>	-						Ì
	- 48				$\left \right $	_		-	† -							t
	- 47									1						t
	- 46					_		-	† -	İ						T
	- 45					_		-	† -	İ						t
	- 44					_		-	<u> </u>	Ī						
24 -	- 43					_		[[· · · · · · · · · · · · · · · · · · ·	ļ
	Leç	gend		Plast	ic Limi		7 1						See Expl	oration Log Key for explanation	Eveland"	
Method					Water		∑ V	vate	er Le	evel ATI	L		of symbol	bls	Exploration Log HA-2 Sheet 1 of 1	

	Δ	spect			Zac							ge - 16027	7					g
7		NSULTING	Fast	Lak	ke Sa		-					<i>c Location</i> namish, Wa	shina	ator	ı	Coordinates (SPN NAD83 ft) E:225001.4 N:1335730 (est)	Exploration Nun	
		ontractor	Equ						an	may		mpling Method		,	',	Ground Surface (GS) Elev. (NAVD88)	HA-3)
A	spect	t Consulting	2.5-inch OI			-	er					rab / DCPT				62'(est)		
		Dperator	Exploratio	on M	lethoo	d(s)					Work Sta	rt/Completion	Dates	3		Top of Casing Elev. (NAVD88)	Depth to Water (Bel	
		JGF	Han	d to	ols	I		low '	foct	•	1	2/13/2016				NA	2.8' (ATD)	
	Elev. (feet)	Exploration C and N			mple pe/ID	v o	Vate	lows/ r Con <u>20 〔</u>	tent (%)●	Blows/6	Tests	Mate Typ			Description		1
			haal 60									T-probe= 12"	10000		Very loo	QUATERNARY ALLUVI se, moist, dark brown, sandy, sli	ghtly silty	T
1 -		COCLOG Boring COCLOG excava	backfilled with ted soil.	sm.	S1				_			T-probe= 8"	0000		rounded	L (GP-GM); fine to coarse sand, to subangular gravel.		
2 -	- 60	00200 12/1:	3/2016				1-		-			GS DCPT= 3,1,1			Very loo coarse s	se, wet, brown, gravelly, silty SA sand, fine rounded to subrounde	ND (SM); fine to d gravel.	ł
3 -	- 59		5/2010				+-		-		+	DODT				t, dark brown, fine-grained PEA vet, brown, gravelly, silty SAND		-
4 -	- 58					<u> </u>			-	+-		DCPT= 13,18,15			coarse s gravel.	sand, fine and coarse rounded to	subangular	ſ
5 -	- 57															of exploration at 4 ft. bgs.	a at 2 0' has	+
6 -	- 56								_	<u> </u>	-				NOLE: Re	efusal because of collapsing wal	is a∟o.∠ DgS.	+
7 -	- 55								_		-							+
8 -	- 54								-		-							
9 -	- 53					L -	 		_	 	-							
	- 52																	-
	- 51								_									
	- 50																	
	- 49						[İ
	- 48						† —		1	<u> </u>	1							
5-	- 47										1							ł
6-	- 46						† —		-	+-	1							+
7-	- 45						+-		+-	+-	1							+
8-	- 44						-		-	+-	-							+
9-	- 43						+-		-	+-	-							+
20-	- 42										-							+
21-	- 41								-									+
2-	- 40					L -			_	\vdash								+
23-	- 39								_		-							+
24 -	- 38								_		-							+
		lend			Plasti	ic Lir	nit r				Limit							
Method	502	jend Grab Sample			riasti	Water	[Ţ١			evel AT	D			of symbo	y: JGF	Explorati Log HA-3	OI
οŻ							-								Approved	by: EOA - 9/12/2017	Sheet 1 of 1	1

ASPECT STANDARD EXPLORATION LOG TEMPLATE P:/GINTWPROJECTS/ZACKUSE CREEK CULVERT.GPJ September 11, 2017

	Δ	spect			Zac							ige - 16027 c Location	1			Exploration Num	<u>g</u>
7		NSULTING	Fast	Lak	ke Sa		•					<i>c Location</i> namish, Wa	shinato	n	Coordinates (SPN NAD83 ft) E:225146.4 N:1335590 (est)		
		ontractor	Equ							may		mpling Method		.,	Ground Surface (GS) Elev. (NAVD88,	HA-5	
А	spec	t Consulting	2.5-inch OI			-	jer					rab / DCPT			54'(est)		
	C	Dperator	Exploratio	on M	lethoo	d(s)					Work Sta	art/Completion	Dates	Top of Casing Elev. (NAVD88) Depth to Water (ow
		JGF	Han	d to	ols	-			6 1	12/13/2016			1	NA 1.5' (A			_
	Elev. (feet)	Exploration (and N		Sa Ty	mple pe/ID	0 V	Vate		tent (%)●	Blows/6	" Tests	Material Type		Description		[
1 -	- 53	CONCEPTION	backfilled with ted soil.						-			T-probe= 16"		SILT (O	TOPSOIL ft, wet, dark brown, slightly grave L); low-plasticity, fine sand, fine ular gravel.	lly, sandy organic and coarse	
2 -	52		3/2010	E E				•	-			DCPT= 6,6,6 GS		Loose, v (GP-GN	QUATERNARY ALLUVI wet, gray, very sandy, slightly silt 1); fine to coarse sand, fine and o	y GRAVEL	י ער ור
3 -	- 51						1-		-		-	DCPT=		Stiff, we	ngular gravel. et, dark brown, slightly gravelly, fi	ne-grained PEAT]+
4 -	- 50						+-		-		1	13,>30		coarse s	w-plasticity, trace fine to medium subrounded to subangular gravel of exploration at 3.8 ft. bgs.	sand, fine and	ſ
5 -	49										-				efusal because of collapsing wall	s at 2' bgs.	+
6 -	48						+-		-								+
7 -	47								-	+-	-						+
8 -	46						+-		-	+-	-						+
9 -	45										-						+
0-	- 44							$\left \right $									+
1-	43								-	+-	+						+
2-	42						+-		-		-						+
3-	41								-		-						+
4-	40						-		-								+
5-	- 39										-						+
6-	- 38					L -	-		-		-						+
7-	37						-		-								+
8-	- 36								-		-						+
9-	35						-		-		+						+
20-	- 34										-						+
21 -	33						-		-								+
2-	32								-		-						+
23-	- 31						-		-		-						+
4-	30						-		-								+
	Leg	jend			Plasti	ic Lir	nit F		 	quid	Limit						
Sample Method	507	Grab Sample				Water	Level	Σı		-	evel AT	D		of symbol		Exploration Log HA-5 Sheet 1 of 1	

APPENDIX B

Geotechnical Laboratory Test Results

B.1 Geotechnical Laboratory Testing

Geotechnical laboratory tests were conducted on selected soil and rock samples collected during the field exploration program. Eight samples were dispatched to Materials Testing and Consulting, Inc. for determination of moisture content, grain size distribution, percent material passing a 200# sieve (fines content), or organic content:

- Moisture content was determined by ASTM D2216, *Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.*
- Grain size analysis was conducted in accordance with ASTM C136, *Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates* and ASTM C117 *Standard Test Method for Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing*
- Percent material passing a 200# sieve (fines content) was conducted in accordance with C117 Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing
- Organic content was conducted in accordance with ASTM D2974 Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils.

The results of the tests are provided in the attached data sheets.

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Received: December 21, 2016
npled By: Others
Reported: December 29, 2016
Sested By: K. O'Connell

CASE NARRATIVE

1. Eleven samples were submitted for analysis.

2. Three samples were submitted for Percent Finer Than the No. 200 sieve according to ASTM C117.

3. Three samples were submitted for loss on ignition determination according to ASTM D2974. Per client request, gravel was separated prior to analysis.

4. Five samples were submitted for grain size determination according to ASTM C136 and C117.

5. The samples are reported in summary tables and plots.

6. There were no other noted anomalies in this project.

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of or extracts from or regarding our reports is reserved pending our written appr

Elabortoble

Reviewed by:

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Bellingham ~ 360.647.6111 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project:Zackuse Creek Fish PassageProject #:16T023-06Date Received:December 21, 2016Date Tested:December 28, 2016

Client: Aspect Consulting

Sampled by: Others

Tested by: K. O'Connell

Amount of Materials Finer Than #200 Sieve - ASTM C117

Sample #	Location	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T16-2378	B-1 S4 10	10.2	176.4	78.0	98.4	59.2%
T16-2382	B-2 S3 7.5	10.7	141.8	67.3	74.5	56.8%
T16-2385	B-2 S14 50	10.7	264.0	214.6	49.4	19.5%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Egabitoble

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Zackuse Creek Fish Passage	Client: Asp
Project #: 16T023-06	
Date Received: December 21, 2016	Sampled by: Othe
Date Tested: December 28, 2016	Tested by: K. C

pect Consulting

hers O'Connell

Moisture Content - ASTM D2216

Sample #	Location	Tare	Wet + Tare	Dry + Tare	Wgt. Of Moisture	Wgt. Of Soil	% Moisture
T16-2377	B-1 S2 5	101.77	225.09	181.04	44.05	79.27	55.6%
T16-2379	B-1 S5b 13.5	103.49	220.16	141.44	78.72	37.95	207.4%
T16-2383	B-2 S7 17.5	102.20	237.84	199.50	38.34	97.30	39.4%

Organic Content - ASTM D2974

	5				
Sample #	Location	Tare	Soil + Tare, Pre-Ignition	Soil + Tare, Post Ignition	% Organics
T16-2377	B-1 S2 5	101.77	181.04	174.76	7.9%
T16-2379	B-1 S5b 13.5	103.49	141.44	130.08	29.9%
T16-2383	B-2 S7 17.5	102.20	199.50	195.17	4.5%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

oble

Reviewed by:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices: Olympia ~ 360.534.9777

Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

	Zackuse Creek I	Fish Passage		Date Received:			7 Unified Soils Classification Sys				
Project #:	16T023-06			Sampled By:	Others	SP-SM, Poorly	graded Sand with Silt and Gravel				
Client:	Aspect Consulti	ng		Date Tested:	28-Dec-16	Sample Color:	:				
Source:	B-1 S12 40			Tested By:	K. O'Connell	Gray					
Sample#:	T16-2380										
				ASTM D-2216,	ASTM D-2419	9, ASTM D-4318, ASTN	/I D-5821				
						$D_{(5)} = 0.045$ mm	% Gravel = 42.4%	Coeff. of Curvature, $C_C = 0.47$			
	Specifications					$D_{(10)} = 0.110$ mm	% Sand = 49.4%	Coeff. of Uniformity, $C_U = 51.79$			
	No Specs					$D_{(15)} = 0.205$ mm	% Silt & Clay = 8.3%	Fineness Modulus = 4.35			
	Sampl	le Meets Specs ?	N/A			$D_{(30)} = 0.540 \text{ mm}$	Liquid Limit = n/a	Plastic Limit = n/a			
						$D_{(50)} = 2.978 \text{ mm}$	Plasticity Index = n/a	Moisture %, as sampled = 8.1%			
						$D_{(60)} = 5.678 \text{ mm}$	Sand Equivalent = n/a Fracture %, 1 Face = n/a	Req'd Sand Equivalent = Req'd Fracture %, 1 Face =			
					D	$D_{(90)} = 25.668 \text{ mm}$ ist Ratio = 27/89	Fracture %, 1 Face = n/a Fracture %, 2+ Faces = n/a				
						5, ASTM D-6913	Fracture $\%$, $2 + \text{Faces} = n/a$	Req'd Fracture %, 2+ Faces =			
		Actual	Interpolated		10111 0-130						
			Cumulative				Grain Size Distribution				
Sieve	Size	Percent	Percent	Specs	Specs	5	4" 3" 3" 3" 3" 2" 5" 3" 3" 3" 3" 3" 3" 3" 3" 4" 4" 4" 5" 3" 3" 4" 4" 4" 5" 3" 3" 4" 4" 4" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5"	g88 28			
US	Metric	Passing	Passing	Max	Min	بة بي 100% يغيغ	┿╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪	₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			
12.00"	300.00		100%	100.0%	0.0%	-					
10.00"	250.00		100%	100.0%	0.0%	-					
8.00"	200.00		100%	100.0%	0.0%	90%		90.0%			
6.00"	150.00		100%	100.0%	0.0%						
4.00"	100.00		100%	100.0%	0.0%	80%		80.0%			
3.00"	75.00		100%	100.0%	0.0%	-					
2.50"	63.00		100%	100.0%	0.0%						
2.00" 1.75"	50.00 45.00		100% 100%	100.0% 100.0%	0.0% 0.0%	70%		70.0%			
1.50"	37.50		100%	100.0%	0.0%		NIIIIIII				
1.30	31.50		100%	100.0%	0.0%	60%		60.0%			
1.00"	25.00	89%	89%	100.0%	0.0%	p -					
3/4"	19.00	87%	87%	100.0%	0.0%	Dussed 50%		assing 			
5/8"	16.00		82%	100.0%	0.0%	8 50%		50.0% 8			
1/2"	12.50	77%	77%	100.0%	0.0%	-					
3/8"	9.50	70%	70%	100.0%	0.0%	40%		40.0%			
1/4"	6.30		62%	100.0%	0.0%	-					
#4	4.75	58%	58%	100.0%	0.0%						
#8	2.36		47%	100.0%	0.0%	30%		30.0%			
#10	2.00	46%	46%	100.0%	0.0%	-					
#16	1.18		40%	100.0%	0.0%	20%		20.0%			
#20	0.850	37%	37%	100.0%	0.0%	-					
#30	0.600	274	31%	100.0%	0.0%	-					
#40	0.425	27%	27%	100.0%	0.0%	10%		10.0%			
#50 #60	0.300	170/	20%	100.0%	0.0%						
#60 #80	0.250	17%	17%	100.0%	0.0%	0%		0.0%			
#80 #100	0.180 0.150	12%	14% 12%	100.0% 100.0%	0.0% 0.0%	10	00.000 10.000 1.000	0.100 0.010 0.001			
#100 #140	0.130	1 2 70	12%	100.0%	0.0%		Particle Size (mm)				
#140 #170	0.108		10% 9%	100.0%	0.0%						
#200	0.075	8.3%	8.3%	100.0%	0.0%	+ Sieve Sizes	Max Specs Min S	Specs Sieve Results			
	Spears Engineering & Tech		I	100.070	0.070						

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

•	Zackuse Creek I	Fish Passage		Date Received:			7 Unified Soils Classification Sys	tem			
Project #: 1				Sampled By:		SM, Silty Sand with Gravel					
	Aspect Consulti	ng		Date Tested:		Sample Color:	:				
Source: I	B-2 S1 2.5			Tested By: K. O'Connell Gray							
Sample#:]	Г16-2381										
				ASTM D-2216,	ASTM D-2419	, ASTM D-4318, ASTM					
						$D_{(5)} = 0.022$ mm	% Gravel = 37.5%	Coeff. of Curvature, $C_C = 0.41$			
	specifications					$D_{(10)} = 0.044$ mm	% Sand = 45.4%	Coeff. of Uniformity, $C_U = 90.2$			
No Specs						$D_{(15)} = 0.066$ mm	% Silt & Clay = 17.0%	Fineness Modulus $= 3.82$			
Sample Meets Specs ? N/A						$D_{(30)} = 0.267 \text{ mm}$	Liquid Limit = n/a	Plastic Limit = n/a			
						$D_{(50)} = 1.332 \text{ mm}$	Plasticity Index = n/a	Moisture %, as sampled = 12.7			
						$D_{(60)} = 3.972 \text{ mm}$	Sand Equivalent = n/a Fracture %, 1 Face = n/a	Req'd Sand Equivalent =			
					Du	$D_{(90)} = 21.269 \text{ mm}$		Req'd Fracture %, 1 Face =			
						st Ratio = 33/76 ASTM D-6913	Fracture %, $2 + Faces = n/a$	Req'd Fracture %, 2+ Faces =			
		Actual	Interpolated		ASTM C-130						
		Cumulative					Grain Size Distribution				
Sieve S	Size	Percent	Percent	Specs	Specs			- 83.99			
US	Metric	Passing	Passing	Max	Min	طَ ھُ ⊋ • • • • • • •	4" 2" 2" 2" 2" 2" 2" 2" 2" 2" 2	8004 120 # # # # # # # # # # # # # # # # # # # # # # # # # #			
12.00"	300.00	5	100%	100.0%	0.0%						
10.00"	250.00		100%	100.0%	0.0%	-					
8.00"	200.00		100%	100.0%	0.0%	90%		90.0%			
6.00"	150.00		100%	100.0%	0.0%						
4.00"	100.00		100%	100.0%	0.0%	80% -		80.0%			
3.00"	75.00		100%	100.0%	0.0%						
2.50"	63.00		100%	100.0%	0.0%						
2.00"	50.00		100%	100.0%	0.0%	70%		70.0%			
1.75"	45.00		100%	100.0%	0.0%						
1.50"	37.50		100%	100.0%	0.0%	60%		60.0%			
1.25" 1.00"	31.50 25.00		100% 100%	100.0% 100.0%	0.0% 0.0%	-					
3/4"	23.00 19.00	84%	84%	100.0%	0.0%	busses 80%		ass ni			
5/8"	16.00	0470	79%	100.0%	0.0%	© 50%		50.0% °			
1/2"	12.50	73%	73%	100.0%	0.0%						
3/8"	9.50	70%	70%	100.0%	0.0%	40%		40.0%			
1/4"	6.30	/ .	65%	100.0%	0.0%						
#4	4.75	62%	62%	100.0%	0.0%						
#8	2.36		55%	100.0%	0.0%	30%		30.0%			
#10	2.00	54%	54%	100.0%	0.0%						
#16	1.18		49%	100.0%	0.0%	20%		20.0%			
#20	0.850	47%	47%	100.0%	0.0%						
#30	0.600		43%	100.0%	0.0%						
#40	0.425	39%	39%	100.0%	0.0%	10%		10.0%			
#50	0.300		32%	100.0%	0.0%						
#60	0.250	29%	29%	100.0%	0.0%	0%		0.0%			
#80	0.180	CCCCCCCCCCCCC	25%	100.0%	0.0%		00.000 10.000 1.000	0.100 0.010 0.001			
#100	0.150	23%	23%	100.0%	0.0%		Particle Size (mm)				
#140	0.106		20%	100.0%	0.0%						
#170	0.090	15.000	18%	100.0%	0.0%						
#200	0.075	17.0% mical Services PS, 1996-9	17.0%	100.0%	0.0%	+ Sieve Sizes	Min S	Specs Sieve Results			

All results apply only to al property of clients, and au

Reviewed by:

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

Project: 2	Zackuse Creek H	Fish Passage		Date Received:	21-Dec-16	ASTM D-248	7 Unified Soils Classification Sys	tem			
Project #: 1	l6T023-06	-		Sampled By:	Others	GM, Silty Grav	vel with Sand				
Client: A	Aspect Consultin	ng		Date Tested:	28-Dec-16	Sample Color:					
	3-2 S11b 36	8			K. O'Connell	Gray					
Sample#: 7				200000 2050		orwy					
Samplen.	110-230-			ASTM D 2216	ASTM D 2410	, ASTM D-4318, ASTN	1 D 5821				
				ASINI D-2210,	ASINI D-24 1)	$D_{(5)} = 0.009 \text{ mm}$	% Gravel = 34.7%	Coeff. of Curvature, $C_C = 0.07$			
Specifications						$D_{(10)} = 0.018$ mm	% Sand = 23.6%	Coeff. of Uniformity, $C_U = 124.4$			
	No Specs					$D_{(15)} = 0.027$ mm	% Silt & Clay = 41.7%	Fineness Modulus $= 3.16$			
Sample Meets Specs ? N/A						$D_{(30)} = 0.054$ mm	Liquid Limit = n/a	Plastic Limit = n/a			
	-	-				$D_{(50)} = 0.427$ mm	Plasticity Index = n/a	Moisture %, as sampled = 13.39			
						$D_{(60)} = 2.241$ mm	Sand Equivalent = n/a	Req'd Sand Equivalent =			
						$D_{(90)} = 26.360 \text{ mm}$	Fracture %, 1 Face = n/a	Req'd Fracture %, 1 Face =			
					Du	st Ratio = $5/6$	Fracture %, $2 + Faces = n/a$	Req'd Fracture %, 2+ Faces =			
						, ASTM D-6913					
			Interpolated				Grain Size Distribution				
		Cumulative									
Sieve S		Percent	Percent	Specs	Specs	•	4" 4" 4" 3" 3" 3" 3" 3" 3" 3" 3" 3" 3" 3" 3" 3"	842 F23			
US	Metric	Passing	Passing	Max	Min	100%	▲ 本 本 本 本 本 本 本 本 本 本 本 本 本	Ĕ兼兼報業			
12.00"	300.00		100%	100.0%	0.0%	-					
10.00"	250.00		100%	100.0%	0.0%						
8.00"	200.00		100%	100.0%	0.0%	90%		90.0%			
6.00"	150.00		100%	100.0%	0.0%	-					
4.00"	100.00		100%	100.0%	0.0%	80%					
3.00" 2.50"	75.00 63.00		100% 100%	100.0% 100.0%	0.0% 0.0%	-					
2.30	50.00		100%	100.0%	0.0%						
2.00 1.75"	30.00 45.00		100%	100.0%	0.0%	70%		70.0%			
1.50"	37.50		100%	100.0%	0.0%	-					
1.25"	31.50		100%	100.0%	0.0%	60%		60.0%			
1.00"	25.00	87%	87%	100.0%	0.0%	p.					
3/4"	19.00	87%	87%	100.0%	0.0%	0					
5/8"	16.00	/ *	82%	100.0%	0.0%	\$ 50%		50.0% 🖗			
1/2"	12.50	75%	75%	100.0%	0.0%	-					
3/8"	9.50	72%	72%	100.0%	0.0%	40%		40.0%			
1/4"	6.30		67%	100.0%	0.0%	-					
#4	4.75	65%	65%	100.0%	0.0%						
#8	2.36		60%	100.0%	0.0%	30%		30.0%			
#10	2.00	59%	59%	100.0%	0.0%	-					
#16	1.18		56%	100.0%	0.0%	20%		20.0%			
#20	0.850	54%	54%	100.0%	0.0%	-					
#30	0.600		52%	100.0%	0.0%	-					
#40	0.425	50%	50%	100.0%	0.0%	10%		10.0%			
#50	0.300	1.000	47%	100.0%	0.0%						
#60	0.250	46%	46%	100.0%	0.0%	0%		0.0%			
#80	0.180	4.454	45%	100.0%	0.0%		00.000 10.000 1.000	0.100 0.010 0.001			
#100	0.150	44%	44%	100.0%	0.0%		Particle Size (mm)				
#140	0.106		43%	100.0%	0.0%						
#170	0.090	41 70	42%	100.0%	0.0%						
#200	0.075	41.7% nnical Services PS, 1996-9	41.7%	100.0%	0.0%	+ Sieve Sizes	Max Specs Min S	Decs Sieve Results			

All results apply only to al property of clients, and au

Reviewed by:

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

-	Zackuse Creek F 16T023-06	Fish Passage		Date Received: Sampled By:		ASTM D-2487 Unified Soils Classification System GP-GM, Poorly graded Gravel with Silt and Sand					
Client:	Aspect Consultin	าย		Date Tested:	28-Dec-16	Sample Color:					
	HA-3 S1 1.5	0			K. O'Connell	Gray					
Sample#:											
oumprent	110 2500			ASTM D-2216	ASTM D.2419	, ASTM D-4318, ASTM	/ D-5821				
				ADIM D-2210 ,	AGINI D-24 1)	$D_{(5)} = 0.040 \text{ mm}$	% Gravel = 49.0%	Coeff. of Curvature, $C_C = 0.57$			
	Specifications					$D_{(10)} = 0.086$ mm	% Sand = 41.5%	Coeff. of Uniformity, $C_U = 93.2$			
	No Specs					$D_{(15)} = 0.186$ mm	% Silt & Clay = 9.4%	Fineness Modulus = 4.56			
		e Meets Specs ?	N/A			$D_{(30)} = 0.629$ mm	Liquid Limit = n/a	Plastic Limit = n/a			
						$D_{(50)} = 4.456$ mm	Plasticity Index = n/a	Moisture %, as sampled = 12.0			
						$D_{(60)} = 8.040 \text{ mm}$	Sand Equivalent = n/a	Req'd Sand Equivalent =			
						$D_{(90)} = 21.574 \text{ mm}$	Fracture %, 1 Face = n/a	Req'd Fracture %, 1 Face =			
					Du	st Ratio = $35/96$	Fracture %, $2 + Faces = n/a$	Req'd Fracture %, 2+ Faces =			
						ASTM D-6913					
		Actual	Interpolated								
		Cumulative					Grain Size Distribution				
Sieve	Size	Percent	Percent	Specs	Specs	5	4" 3" 2" 2" 3" 3" 3" 3" 3" 3" 3" 3" 3" 3" 4" 4 4 6 4 4 6 6 7 4 4 6 6 7 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	98468			
US	Metric	Passing	Passing	Max	Min	ۍ چې چې 					
2.00"	300.00		100%	100.0%	0.0%						
0.00"	250.00		100%	100.0%	0.0%						
8.00"	200.00		100%	100.0%	0.0%	90%		90.0%			
5.00"	150.00		100%	100.0%	0.0%						
4.00"	100.00		100%	100.0%	0.0%	80%		80.0%			
3.00"	75.00		100%	100.0%	0.0%	-		00.078			
2.50"	63.00		100%	100.0%	0.0%	-					
2.00"	50.00		100%	100.0%	0.0%	70%		70.0%			
1.75"	45.00		100%	100.0%	0.0%	-					
1.50"	37.50		100%	100.0%	0.0%	-					
1.25"	31.50		100%	100.0%	0.0%	60%		60.0%			
1.00"	25.00	95%	95%	100.0%	0.0%	бц isss g g g g g g g g g g g g g g g g g					
3/4"	19.00	86%	86%	100.0%	0.0%	۳ ۵۵ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲ ۵۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲					
5/8"	16.00	700/	79%	100.0%	0.0%	-					
1/2"	12.50	70%	70%	100.0%	0.0%						
3/8"	9.50	64%	64% 55%	100.0%	0.0%	40%		40.0%			
1/4" #4	6.30 4.75	510/	55% 51%	100.0%	0.0%						
#4 #8	4.75 2.36	51%	51% 43%	100.0% 100.0%	0.0% 0.0%	30%	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30.0%			
#8 #10	2.30	42%	43% 42%	100.0%	0.0%						
#10 #16	1.18	<i>τ∠</i> /0	42% 37%	100.0%	0.0%						
#10 #20	0.850	34%	34%	100.0%	0.0%	20%		20.0%			
#30	0.600	5170	29%	100.0%	0.0%						
#40	0.425	26%	26%	100.0%	0.0%	10%		10.0%			
#50	0.300	- / -	20%	100.0%	0.0%						
#60	0.250	18%	18%	100.0%	0.0%						
#80	0.180	- / -	15%	100.0%	0.0%	0%		0.100 0.010 0.001			
#100	0.150	13%	13%	100.0%	0.0%	10					
#140	0.106		11%	100.0%	0.0%		Particle Size (mm)				
#170	0.090		10%	100.0%	0.0%						
			- · · •								

All results apply only to al property of clients, and aut ng our reports is reserved pend

Reviewed by:

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

Project #:	Zackuse Creek I 16T023-06	-		Date Received: Sampled By:	Others	ASTM D-2487 Unified Soils Classification System GP-GM, Poorly graded Gravel with Silt and Sand Sample Colory					
	Aspect Consulti	ng		Date Tested:		Sample Color:					
	HA-5 S1 1.5			Tested By: K. O'Connell Gray							
Sample#: '	Г16-2387										
				ASTM D-2216,	ASTM D-2419	, ASTM D-4318, ASTM					
	a					$D_{(5)} = 0.043$ mm	% Gravel = 46.4%	Coeff. of Curvature, $C_C = 0.18$			
	Specifications					$D_{(10)} = 0.096$ mm	% Sand = 44.9%	Coeff. of Uniformity, $C_U = 98.0$			
No Specs Sample Meets Specs ? N/A						$D_{(15)} = 0.174$ mm $D_{(30)} = 0.404$ mm	% Silt & Clay = 8.8% Liquid Limit = n/a	Fineness Modulus = 4.56 Plastic Limit = n/a			
						$D_{(30)} = 0.404 \text{ mm}$ $D_{(50)} = 3.267 \text{ mm}$	Plasticity Index = n/a	Moisture %, as sampled = 17.8			
						$D_{(50)} = 3.207$ mm $D_{(60)} = 9.410$ mm	Sand Equivalent = n/a	Req'd Sand Equivalent =			
						$D_{(60)} = 37.245 \text{ mm}$	Fracture %, 1 Face = n/a	Req'd Fracture %, 1 Face =			
					Dus	$E_{(90)} = 37.243$ mm st Ratio = 26/93	Fracture %, $2 + \text{Faces} = n/a$	Req'd Fracture %, 2+ Faces =			
						ASTM D-6913	1 acture 70, 2 + 1 acts = 11/a				
		Actual	Interpolated								
		Cumulative					Grain Size Distribution				
Sieve	Size	Percent	Percent	Specs	Specs		4" 3" 2" 5/8"%" 5/8"%" 5/8"%" 3/8" 5/8" 5/8" 3/8" 5/8" 3/8" 5/8" 5/8" 5/8" 5/8" 5/8" 5/8" 5/8" 5	284 88			
US	Metric	Passing	Passing	Max	Min	مة م⊖ هيچي 100%	▲▲▲▲▲▲▲▲▲ ●▲▲▲▲▲▲▲ ●▲↓ ●▲↓ ●▲↓ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●				
2.00"	300.00		100%	100.0%	0.0%						
0.00"	250.00		100%	100.0%	0.0%	-					
8.00"	200.00		100%	100.0%	0.0%	90%	┈╫╫┼┼╶╅┥╴┤	90.0%			
5.00"	150.00		100%	100.0%	0.0%	-					
4.00"	100.00		100%	100.0%	0.0%	80%		80.0%			
3.00"	75.00		100%	100.0%	0.0%	-					
2.50"	63.00		100%	100.0%	0.0%	-					
2.00" 1.75"	50.00 45.00		100% 100%	100.0% 100.0%	0.0% 0.0%	70%		70.0%			
1.50"	37.50	90%	90%	100.0%	0.0%	-					
1.25"	31.50	<i>J</i> 0 <i>7</i> 0	84%	100.0%	0.0%	60%		60.0%			
1.00"	25.00	76%	76%	100.0%	0.0%	Б	N				
3/4"	19.00	69%	69%	100.0%	0.0%	бц iss ва % 50%		Passi			
5/8"	16.00		66%	100.0%	0.0%	8 50%		50.0% 8			
1/2"	12.50	63%	63%	100.0%	0.0%						
3/8"	9.50	60%	60%	100.0%	0.0%	40%		40.0%			
1/4"	6.30		56%	100.0%	0.0%						
#4	4.75	54%	54%	100.0%	0.0%						
#8	2.36		48%	100.0%	0.0%	30%		30.0%			
#10	2.00	47%	47%	100.0%	0.0%						
#16	1.18	1004	42%	100.0%	0.0%	20%		20.0%			
#20	0.850	40%	40%	100.0%	0.0%						
#30	0.600	210/	35%	100.0%	0.0%						
#40 #50	0.425	31%	31%	100.0%	0.0% 0.0%	10%		10.0%			
#50 #60	0.300 0.250	21%	24% 21%	100.0% 100.0%	0.0%						
#80 #80	0.230	L 1 70	15%	100.0%	0.0%	0%					
#80 #100	0.150	13%	13%	100.0%	0.0%	10	0.000 10.000 1.000	0.100 0.010 0.001			
#140	0.106	10/0	11%	100.0%	0.0%		Particle Size (mm)				
#170	0.090		10%	100.0%	0.0%						
	0.075	8.8%	8.8%	100.0%	0.0%						

All results apply only to al property of clients, and au

Reviewed by: